13 research outputs found

    PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures) from primary sequence data which makes use of Parallel Cascade Identification (PCI), a powerful technique from the field of nonlinear system identification.</p> <p>Results</p> <p>Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs) are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at <url>http://bioinf.sce.carleton.ca/PCISS</url>. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP) interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input protein sequence data and also to encode the resulting structure prediction in a machine-readable format. To our knowledge, this represents the only publicly available SOAP-interface for a protein secondary structure prediction service with published WSDL interface definition.</p> <p>Conclusion</p> <p>Relative to the 9 contemporary methods included in the comparison cascaded PCI classifiers perform well, however PCI finds greatest application as a consensus classifier. When PCI is used to combine a sequence-to-structure PCI-based classifier with the current leading ANN-based method, PSIPRED, the overall error rate (Q3) is maintained while the rate of occurrence of a particularly detrimental error is reduced by up to 25%. This improvement in BAD score, combined with the machine-readable SOAP web service interface makes PCI-SS particularly useful for inclusion in a tertiary structure prediction pipeline.</p

    Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+

    Get PDF
    The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the pi- pi- pi+ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The resonant nature of this wave is evident from the mass-dependent phase differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2 is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged; version 3 updated authors, text shortened, data unchange

    Trends in template/fragment-free protein structure prediction

    Get PDF
    Predicting the structure of a protein from its amino acid sequence is a long-standing unsolved problem in computational biology. Its solution would be of both fundamental and practical importance as the gap between the number of known sequences and the number of experimentally solved structures widens rapidly. Currently, the most successful approaches are based on fragment/template reassembly. Lacking progress in template-free structure prediction calls for novel ideas and approaches. This article reviews trends in the development of physical and specific knowledge-based energy functions as well as sampling techniques for fragment-free structure prediction. Recent physical- and knowledge-based studies demonstrated that it is possible to sample and predict highly accurate protein structures without borrowing native fragments from known protein structures. These emerging approaches with fully flexible sampling have the potential to move the field forward

    From Molecular Modeling to Drug Design

    No full text

    Measurement of the spin structure of the deuteron in the DIS region

    No full text
    Ageev ES, Alexakhin VY, Alexandrov Y, et al. Measurement of the spin structure of the deuteron in the DIS region. Phys.Lett. B. 2005;612(3-4):154-164.We present a new measurement of the longitudinal spin asymmetry Ad and the spin-dependent structure function g(1)(d) of the deuteron in the range 1 < Q(2) < 100 GeV2 and 0.004 < x < 0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised (LiD)-Li-6 target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03. (c) 2005 Elsevier B.V. All rights reserved

    Reconstitution of the immune system after hematopoietic stem cell transplantation in humans

    No full text
    Hematopoietic stem cell transplantation is associated with a severe immune deficiency. As a result, the patient is at high risk of infections. Innate immunity, including epithelial barriers, monocytes, granulocytes, and NK cells recovers within weeks after transplantation. By contrast, adaptive immunity recovers much slower. B- and T-cell counts normalize during the first months after transplantation, but in particular, T-cell immunity may remain impaired for years. During the last decade, much of the underlying mechanisms have been identified. These insights may provide new therapies to accelerate recovery
    corecore